18 research outputs found

    Fatigue life of machined components

    Get PDF
    A correlation between machining process and fatigue strength of machined components clearly exists. However, a complete picture of the knowledge on this is not readily available for practical applications. This study addresses this issue by investigating the effects of machining methods on fatigue life of commonly used materials, such as titanium alloys, steel, aluminium alloys and nickel alloys from previous literature. Effects of turning, milling, grinding and different non-conventional machining processes on fatigue strength of above-mentioned materials have been investigated in detail with correlated information. It is found that the effect of materials is not significant except steel in which phase change causes volume expansion, resulting in compressive/tensile residual stresses based on the amounts of white layers. It is very complex to identify the influence of surface roughness on the fatigue strength of machined components in the presence of residual stresses. The polishing process improves the surface roughness, but removes the surface layers that contain compressive residual stresses to decrease the fatigue strength of polished specimens. The compressive and tensile residual stresses improve and reduce fatigue strength, respectively. Grinding process induces tensile residual stresses on the machined surfaces due to high temperature generation. On the other hand, milling and turning processes induce compressive residual stresses. High temperature non-conventional machining generates a network of micro-cracks on the surfaces in addition to tensile residual stresses to subsequently reduce fatigue strength of machined components. Embedded grits of abrasive water jet machining degrade the fatigue performance of components machined by this method

    Activation Energy for Grain Growth of the Isochronally Annealed Ultrafine Grained Magnesium Alloy after Hot Extrusion and Equal-Channel Angular Pressing (EX-ECAP)

    No full text
    Magnesium alloy AZ31 prepared by hot extrusion and 4 passes of equal-channel angular pressing (EX-ECAP) has ultra-fine grained microstructure with an average grain size of 900 nm. Grain growth is analysed using a general equation for the grain growth and an Arrhenius equation. The calculated value of the activation energy for grain growth differs with the annealing temperature. The fitted value of activation energy for grain growth in the intermediate temperature range (210-400°C) is in accordance with the results of other authors, but it is shown in this study that such value is abnormally low and physically meaningless. More real values of apparent activation energy in this temperature range were calculated from the model assuming a linear increase of activation energy with increasing annealing temperature. Result of this linear model of evolution of activation energy in the temperature range between 210-400°C is expressed by the interval estimation of apparent activation energy values. It is concluded that the evolution of apparent activation energy can be explained by a change in the mechanism underlying the grain boundary migration. In the low temperature range, the grain boundary diffusion is dominant since the material is ultra-fine grained, whereas at higher temperatures, the lattice self-diffusion is more important

    Anisotropic Phase Field Model of Heteroepitaxial Growth

    No full text
    We study the heteroepitaxial growth of thin layers by means of the modified phase-field model with the incorporated anisotropy. The influence of elastic and surface energies on the layer growth is considered. For numerical solution of the model, an explicit numerical scheme based on the finite element method is employed. The obtained computational results with various anisotropy settings demonstrate the anisotropic thin-layer pattern growth

    Ti-15Mo alloy prepared by cryogenic milling and spark plasma sintering

    No full text
    In this study, Ti-15Mo alloy powder was prepared by gas atomization and subsequent cryogenic milling in order to achieve ultra-fine grained microstructure. Both milled and non-milled powders were compacted by spark plasma sintering (SPS) at temperature of 800 °C for different sintering times up to 6 minutes. Sintering temperature and time affect porosity, microstructure and phase composition of the alloy. Milled powder can be sintered at comparatively lower temperature to achieve fully dense material. Sintering below β-transus temperature results in α+β-structure. Furthermore, amount of α-phase is higher in the material sintered from the milled powder due to increased oxygen content and also due to refined microstructure which facilitates α-phase precipitation. Mechanical properties are also affected by formation of ω-phase during uncontrolled cooling in the SPS machine

    Mechanisms of Plastic Deformation in Ti-Nb-Zr-Ta Based Biomedical Alloys with Fe and Si Content

    No full text
    Specialized beta titanium alloys containing biocompatible elements (Nb, Zr, Ta) are increasingly considered as a material for orthopaedic implants. In this study, small additions of Fe and Si are used to increase the strength of commercial Ti-35Nb-7Zr-5Ta (TNZT) alloy. Six different advanced alloys with iron content up to 2 wt% and silicon content up to 1 wt% were manufactured by arc melting and hot forging. Flow curves were determined from tensile tests carried out at room temperature. The yield stress is increased from 450 MPa to 700 MPa due to small Fe and Si additions. Fe causes solid solution strengthening exhibited by sharp yield point and significant work hardening. (Ti,Zr)₅Si₃ intermetallic particles further increase the strength via precipitation hardening. An unusual serrated yielding behaviour of benchmark TNZT alloy is caused by twinning as shown by acoustic emission measurement and electron backscattered diffraction analysis

    Sintering of Ti-based biomedical alloys with increased oxygen content from elemental powders

    No full text
    Revived interest for beta Ti alloys with increased oxygen content is motivated by the prospect of achieving material with low modulus and high strength simultaneously. Fine tuning of amount of oxygen and beta stabilizing elements is critical for achieving good mechanical properties. This study shows that powder metallurgy method of spark plasma sintering is capable of producing Ti-Nb-Zr-O alloys from elemental powders. This simple approach allows for quick sampling and production of several alloys with various chemical composition. Elemental powders were mixed with appropriate amount of titanium dioxide to achieve Ti-29Nb-7Zr-0.7O alloy. Sintering was performed at 1400 - 1500 °C for 15 – 30 minutes

    Observation of the microstructure of the metastable Ti15Mo alloy after ageing

    No full text
    Omega phase particles can be observed by conventional SEM. Metastable Ti15Mo alloy was annealed at 500 °C for 16 hours. During annealing, ω phase particles grew and got chemically stabilized by expelling Mo atoms. As the result, these ellipsoidal particles, approx. 100 nm long and 50 nm wide can be observed using back-scattered electrons signal in conventional SEM due to chemical contrast. TEM study proved that these particles indeed belong to ω phase. Co-existence of β, ω and α phases was observed. Thin α lamellae were observed along with distorted ω phase particles by TEM

    Achieving high strength and low Young’s modulus by controlling the beta stabilizers content in Ti-Nb-Ta-Zr-O alloys

    Get PDF
    High strength and low Young’s modulus is the desired combination of mechanical properties for the endoprostheses material. Metastable beta titanium alloys are promising materials for this application. In this study, four Ti-xNb-6Ta-7Zr-0.7O (wt.%) alloys were prepared where Nb content ranged from 26 to 35 wt. %. All alloys contained pure beta phase. The high oxygen content causes high microhardness (330 HV), hence also the strength, while decreasing content of Nb leads to lower electrons per atom (e/a) ratio. The e/a ratio affects the Young’s modulus which is highest (76 GPa) in Ti-35Nb-6Ta-7Zr-0.7O alloy with e/a=4.31 and the lowest (64 GPa) in Ti-26Nb-6Ta-7Zr-0.7O with e/a=4.24. Such evolution of Young’s modulus is in accordance with existing literature data, however, in comparison with other works, the Ti-26Nb-6Ta-7Zr-0.7O alloy shows double microhardness when compared to alloys with similar Young’s modulus. Therefore, the approach of using controlled oxygen content for alloy design is very promising for development of biocompatible metastable beta Ti alloy for endoprostheses production

    Observation of the microstructure of the metastable Ti15Mo alloy after ageing

    Get PDF
    Omega phase particles can be observed by conventional SEM. Metastable Ti15Mo alloy was annealed at 500 °C for 16 hours. During annealing, ω phase particles grew and got chemically stabilized by expelling Mo atoms. As the result, these ellipsoidal particles, approx. 100 nm long and 50 nm wide can be observed using back-scattered electrons signal in conventional SEM due to chemical contrast. TEM study proved that these particles indeed belong to ω phase. Co-existence of β, ω and α phases was observed. Thin α lamellae were observed along with distorted ω phase particles by TEM

    Alpha Variant Selection Determined from Grain Misorientations in Ti-6Al-7Nb Alloy with a Duplex Microstructure

    No full text
    Titanium occurs in two structures; a high temperature body-centered cubic structure which is known as β phase and an ambient temperature α phase which has the hexagonal closed-packed structure. In the present study a biomedical Ti-6Al-7Nb alloy was investigated. The so-called duplex structure consisting of α lamellae and equiaxed primary α-grains was prepared by a thermal treatment. The α lamellae are created during cooling from a β-field according to the Burgers relation. This relation allows the formation of the α lamellae with different crystallographic orientations - so-called variants. The preferential misorientation between α lamellae was studied by a detailed electron backscattered diffraction analysis. The misorientation of grains in the duplex structure was modelled by a sum of random Mackenzie distribution and Gaussian peaks related to the preferred misorientations according to the Burgers relation. The preferred misorientations based on the Burgers relationship were identified in the biomedical Ti-6Al-7Nb alloy with duplex structure. It is confirmed that the variant selection of α lamellae is not random
    corecore